Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Korean Journal of Radiology ; : 720-731, 2022.
Article in English | WPRIM | ID: wpr-938771

ABSTRACT

Objective@#We aimed to develop and test a deep learning algorithm (DLA) for fully automated measurement of the volume and signal intensity (SI) of the liver and spleen using gadoxetic acid-enhanced hepatobiliary phase (HBP)-magnetic resonance imaging (MRI) and to evaluate the clinical utility of DLA-assisted assessment of functional liver capacity. @*Materials and Methods@#The DLA was developed using HBP-MRI data from 1014 patients. Using an independent test dataset (110 internal and 90 external MRI data), the segmentation performance of the DLA was measured using the Dice similarity score (DSS), and the agreement between the DLA and the ground truth for the volume and SI measurements was assessed with a Bland-Altman 95% limit of agreement (LOA). In 276 separate patients (male:female, 191:85; mean age ± standard deviation, 40 ± 15 years) who underwent hepatic resection, we evaluated the correlations between various DLA-based MRI indices, including liver volume normalized by body surface area (LV BSA), liver-to-spleen SI ratio (LSSR), MRI parameter-adjusted LSSR (aLSSR), LSSR x LV BSA, and aLSSR x LV BSA, and the indocyanine green retention rate at 15 minutes (ICG-R15), and determined the diagnostic performance of the DLA-based MRI indices to detect ICG-R15 ≥ 20%. @*Results@#In the test dataset, the mean DSS was 0.977 for liver segmentation and 0.946 for spleen segmentation. The BlandAltman 95% LOAs were 0.08% ± 3.70% for the liver volume, 0.20% ± 7.89% for the spleen volume, -0.02% ± 1.28% for the liver SI, and -0.01% ± 1.70% for the spleen SI. Among DLA-based MRI indices, aLSSR x LV BSA showed the strongest correlation with ICG-R15 (r = -0.54, p < 0.001), with area under receiver operating characteristic curve of 0.932 (95% confidence interval, 0.895–0.959) to diagnose ICG-R15 ≥ 20%. @*Conclusion@#Our DLA can accurately measure the volume and SI of the liver and spleen and may be useful for assessing functional liver capacity using gadoxetic acid-enhanced HBP-MRI.

2.
Korean Journal of Radiology ; : 1985-1995, 2021.
Article in English | WPRIM | ID: wpr-918194

ABSTRACT

Objective@#Although the liver-to-spleen volume ratio (LSVR) based on CT reflects portal hypertension, its prognostic role in cirrhotic patients has not been proven. We evaluated the utility of LSVR, automatically measured from CT images using a deep learning algorithm, as a predictor of hepatic decompensation and transplantation-free survival in patients with hepatitis B viral (HBV)-compensated cirrhosis. @*Materials and Methods@#A deep learning algorithm was used to measure the LSVR in a cohort of 1027 consecutive patients (mean age, 50.5 years; 675 male and 352 female) with HBV-compensated cirrhosis who underwent liver CT (2007–2010).Associations of LSVR with hepatic decompensation and transplantation-free survival were evaluated using multivariable Cox proportional hazards and competing risk analyses, accounting for either the Child-Pugh score (CPS) or Model for End Stage Liver Disease (MELD) score and other variables. The risk of the liver-related events was estimated using Kaplan-Meier analysis and the Aalen-Johansen estimator. @*Results@#After adjustment for either CPS or MELD and other variables, LSVR was identified as a significant independent predictor of hepatic decompensation (hazard ratio for LSVR increase by 1, 0.71 and 0.68 for CPS and MELD models, respectively; p < 0.001) and transplantation-free survival (hazard ratio for LSVR increase by 1, 0.8 and 0.77, respectively; p < 0.001). Patients with an LSVR of < 2.9 (n = 381) had significantly higher 3-year risks of hepatic decompensation (16.7% vs. 2.5%, p < 0.001) and liver-related death or transplantation (10.0% vs. 1.1%, p < 0.001) than those with an LSVR ≥ 2.9 (n = 646). When patients were stratified according to CPS (Child-Pugh A vs. B–C) and MELD (< 10 vs. ≥ 10), an LSVR of < 2.9 was still associated with a higher risk of liver-related events than an LSVR of ≥ 2.9 for all Child-Pugh (p ≤ 0.045) and MELD (p ≤ 0.009) stratifications. @*Conclusion@#The LSVR measured on CT can predict hepatic decompensation and transplantation-free survival in patients with HBV-compensated cirrhosis.

3.
Korean Journal of Radiology ; : 987-997, 2020.
Article | WPRIM | ID: wpr-833527

ABSTRACT

Objective@#Measurement of the liver and spleen volumes has clinical implications. Although computed tomography (CT)volumetry is considered to be the most reliable noninvasive method for liver and spleen volume measurement, it has limitedapplication in clinical practice due to its time-consuming segmentation process. We aimed to develop and validate a deeplearning algorithm (DLA) for fully automated liver and spleen segmentation using portal venous phase CT images in variousliver conditions. @*Materials and Methods@#A DLA for liver and spleen segmentation was trained using a development dataset of portal venousCT images from 813 patients. Performance of the DLA was evaluated in two separate test datasets: dataset-1 which included150 CT examinations in patients with various liver conditions (i.e., healthy liver, fatty liver, chronic liver disease, cirrhosis,and post-hepatectomy) and dataset-2 which included 50 pairs of CT examinations performed at ours and other institutions.The performance of the DLA was evaluated using the dice similarity score (DSS) for segmentation and Bland-Altman 95%limits of agreement (LOA) for measurement of the volumetric indices, which was compared with that of ground truth manualsegmentation. @*Results@#In test dataset-1, the DLA achieved a mean DSS of 0.973 and 0.974 for liver and spleen segmentation, respectively,with no significant difference in DSS across different liver conditions (p = 0.60 and 0.26 for the liver and spleen, respectively).For the measurement of volumetric indices, the Bland-Altman 95% LOA was -0.17 ± 3.07% for liver volume and -0.56 ± 3.78%for spleen volume. In test dataset-2, DLA performance using CT images obtained at outside institutions and our institutionwas comparable for liver (DSS, 0.982 vs. 0.983; p = 0.28) and spleen (DSS, 0.969 vs. 0.968; p = 0.41) segmentation. @*Conclusion@#The DLA enabled highly accurate segmentation and volume measurement of the liver and spleen using portalvenous phase CT images of patients with various liver conditions.

SELECTION OF CITATIONS
SEARCH DETAIL